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Abstract
A close inspection on the three-dimensional hydrogen atom Hamiltonian
revealed formal eigenvectors often discarded in the literature. Although not
in its domain, such eigenvectors belong to the Hilbert space, and so their time
evolution is well defined. They are then related to the one-dimensional and
two-dimensional hydrogen atoms and it is numerically found that they have
continuous components, so that ionization can take place.

PACS numbers: 01.55.+b, 02.30.Gp, 03.65.Ca

1. Introduction

In order to clearly state the question addressed here, it is important to recall some points of
the mathematical foundation of observables in quantum mechanics. There will be two main
contributions, one related to some weak solutions of the Schrödinger equation and the other
to dimensional interpretations.

The problem of finding the correct self-adjoint extension describing the quantum
(Schrödinger) operator corresponding to a physical model can be subtle and difficult. Usually
the physicist has a clear expression for the operator, an unbounded one acting in a Hilbert
space H, but it is not obvious which domain should be taken (some general references for
what follows are [1–3]).

Let 〈ψ, φ〉 denote the inner product inH; if T is a linear operator acting on its dense domain
dom T ⊂ H, then to represent a physical observable it is necessary that T is Hermitian, i.e.,

〈T ψ, φ〉 = 〈ψ, T φ〉, ∀ψ, φ ∈ dom T .

However this condition is not enough to guarantee that T has real spectrum and the time
evolution it generates is unitary; the right condition is self-adjointness. The domain of its
adjoint T ∗ is

dom T ∗ = {ξ ∈ H : ∃η ∈ H with 〈η, φ〉 = 〈ξ, T φ〉,∀φ ∈ dom T },
0305-4470/06/133447+08$30.00 © 2006 IOP Publishing Ltd Printed in the UK 3447
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and for ξ ∈ dom T ∗, one has T ∗ξ = η. It follows that T ∗ is well defined if dom T is dense in
H, and T is Hermitian if, and only if, T ∗ is an extension of T. The operator T is self-adjoint if
T = T ∗. Note also that (often) for bounded operators the distinction between Hermitian and
self-adjoint operators does not exist.

As already mentioned, usually T is Hermitian with dense domain, and one asks if it is
also self-adjoint or has any self-adjoint extension; such extensions are the candidates for the
operator describing the related physical observable. A nice situation that often occurs, in
particular for the Hamiltonian of the hydrogen atom (and other atomic systems as well), is that
T is essentially self-adjoint, i.e., it has just one self-adjoint extension and the physical operator
is well determined. However, there are situations where there are infinitely many self-adjoint
extensions and each one should correspond to a different physical circumstance; the choice is
a physical one, not on mathematical bases. Even worse, some Hermitian operators have no
self-adjoint extensions!

The standard example of such a framework is the momentum operator P = −i d
dx

for
a particle in a box [0, 1]. In this case H = L2[0, 1], it is natural to take dom P as smooth
functions ψ ∈ H such that ψ(0) = 0 = ψ(1) (so that the particle remains confined to the
box); the self-adjoint extensions of this Hermitian operator are Pα , where α is a complex
number with |α| = 1, and all elements of dom Pα satisfy ψ(1) = αψ(0).

It is worth remarking that if T is Hermitian and dom T = H, then T is bounded, so that,
in general, such domain questions are not avoidable. These interesting problems are well
explored in the literature; and as additional references see [4], and for applications to the
one-dimensional (1D) hydrogen atom see [5, 6].

Nevertheless, there are some delicate issues in the mathematical foundations of quantum
mechanics that seem not yet exploited from the physical point of view. The main goal of this
work is to discuss one of such issues and relate it to a physical situation.

Recall that a self-adjoint Hamiltonian operator H generates a time evolution ψ(t) =
U(t, 0)ψ = e−itH ψ , which is a solution of the Schrödinger equation

i
d

dt
ψ(t) = Hψ(t), ψ = ψ(0) ∈ dom H.

Since U(t, 0) is a family of unitary operators, for any time t its domain is the whole Hilbert
space H, so that it is meaningful to consider U(t, 0)ϕ for ϕ ∈ H but with ϕ /∈ dom H , i.e., the
time evolution is not restricted to the domain of H. Sometimes U(t, 0)ϕ, for ϕ /∈ dom H , is
called a weak solution of the Schrödinger equation.

An unusual situation will be presented. A self-adjoint operator H with dense dom H ⊂
H = L2(R3) will be considered, vectors � ∈ H not belonging to its domain will be given,
although they are pseudo-eigenvectors of H, that is,

H� = λ��, (1)

for λ� ∈ R. Some numerical calculations will indicate that � has a nonzero component
in the continuous subspace of H, so that the naı̈ve time evolution built from (1) gives an
incorrect answer. It will be argued that such solutions are related to the same model in smaller
dimensions. Furthermore, the physical system in question is one of the most celebrated models
in quantum mechanics, the three dimensional (3D) hydrogen atom.

2. Pseudo-eigenvectors as weak solutions

The Hermitian Hamiltonian of the 3D hydrogen atom is

H0 = − h̄2

2µ
	 − e2

r
, dom H0 = C∞

0 (R3) ⊂ L2(R3),



Weak solutions of the hydrogen atom 3449

where µ is the electron mass, e its electric charge and C∞
0 (R3) denotes the set of smooth

functions with compact support. This operator is essentially self-adjoint and its unique self-
adjoint extension HH , the 3D hydrogen atom Hamiltonian, reads

HH = − h̄2

2µ
	 − e2

r
, dom HH = H 2(R3), (2)

with H 2(R3) denoting an appropriate Sobolev space; in particular, H 2(R3) is a subspace of
L2(R3), it is also the natural domain of the free particle Hamiltonian and all its elements are
continuous functions [2].

The usual spectral analysis of HH can be performed and its well-known eigenvalues

− µe4

2h̄2n2
, n � 1,

can be found. Recall that the closed subspace Hp generated by its eigenvectors is named the
point subspace of HH and its orthogonal complement Hac is a non-trivial subspace (i.e., it
has nonzero elements) and named the absolutely continuous (or scattering) subspace of HH .
Physically, the members of Hp are the bound states while the elements of Hac describe the
ionizing atomic states (this interpretation follows, for instance, by the RAGE theorem [7, 8]).

The eigenvalue equation for the 3D hydrogen atom Hamiltonian is separable in spherical
coordinates r � 0, 0 � θ � π, 0 � φ � 2π , and by taking the standard representation

�(r, θ, φ) = R(r) (θ)�(φ), (3)

the equation for (θ) is given by [11]

1

sin θ

d

dθ

(
sin θ

d

dθ

)
−

(
m2

sin2 θ
− �(� + 1)

)
 = 0, (4)

with m and � � 0 being integer constants. For each � value one has −� � m � �.
Consider first the particular case � = 0; it follows that m = 0 and (4) reduces to

1

sin θ

d

dθ

(
sin θ

d

dθ

)
= 0. (5)

The usual normalized solution of this equation is 0,0(θ) = l=0,m=0(θ) = 1/
√

2. However,
there is also the additional solution (that will play a major role here)

ξ0,0(θ) =
√

6

π
ln

[
tan

(
θ

2

)]
. (6)

This is just one instance of additional solutions ξ�,m of (4) for �,m as above; such solutions
are Legendre function of the second kind [9, 10]. The ξ�,m solutions have been discarded in
the mathematical literature since they are not continuous at θ = 0 and θ = π , and so via (3)
they do not generate elements in the domain of HH ; and discarded in the physical literature
[11] by arguing they are not bounded functions.

By taking the usual radial Rn,�(r) and azimuthal �m(φ) = 1√
2π

eimφ solutions for the 3D
hydrogen atom, set (� < n)

Fn,�,0(r, θ, φ) =
[(

2

na0

)3
(n − � − 1)!

4πn [(n + �)!]3

] 1
2

exp

(
− r

na0

)(
2r

na0

)�

L2�+1
n+�

(
2r

na0

)

so that one gets the standard eigenfunctions (here restricted to m = 0)

�n,�,0(r, θ, φ) := Fn,�,0(r, θ, φ)�,0(θ),



3450 A López-Castillo and C R de Oliveira

and now the additional ones,

�n,�,0(r, θ, φ) := Fn,�,0(r, θ, φ)ξ�,0(θ),

where a0 = h̄2/(µe2) denotes the Bohr radius and L2�+1
n+� are the Laguerre polynomials.

For m 
= 0 the probability density generated by ξ�,m diverges (recall the Jacobian is
r2 sin θ ), i.e., ∫ π

0
sin θ |ξ�,m
=0(θ)|2 dθ = ∞,

thus the corresponding functions �n,�,m 
=0(r, θ, φ) do not belong to the Hilbert space L2(R3).
Hence, it is meaningless to talk about their time evolution even as weak solutions of the 3D
hydrogen atom Schrödinger equation.

However, for m = 0, the probability density generated by ξ�,0 does not diverge, i.e., by
choosing appropriate constants it is found that∫ π

0
sin θ |ξ�,0(θ)|2 dθ = 1,

so that, together with the R(r) and �(φ) counterparts in (3), ξ�,0 generates elements �n,�,0 of
L2(R3), as given by the expression above.

Note that although �n,�,0 does not belong to the domain of HH , one formally finds

HH�n,�,0 = λn�n,�,0, λn = − h̄2

2µa2
0n

2
, ∀n, 0 � � < n, (7)

so that �n,�,0 and λn are pseudo-eigenvectors and pseudo-eigenvalues of HH , respectively.
Another point supporting the use of the adjective ‘pseudo’ is that �n,�,0 are not orthogonal to
every �n,�′,0 (for instance, �n,0,0 is not orthogonal to �n,�′,0 with odd �′).

The question to be addressed now is about the time evolution of �n,�,0, which is well
defined since �n,�,0 ∈ L2(R3) and so U(t, 0)�n,�,0 is a weak solution of the 3D hydrogen
atom Schrödinger equation

ih̄
∂

∂t
ψ = HHψ.

Based on (7) the naı̈ve expression for the solution �n,�,0(t) = e−iHH t/h̄�n,�,0 is

�n,�,0(t) = e−iλnt/h̄�n,�,0; (8)

such solution is not correct, for �n,�,0 is not in the domain of HH ; if (8) holds then �n,�,0(t)

would be strongly differentiable and so one could conclude that �n,�,0 ∈ dom HH . Note
that (8) is correct if � is replaced by �.

From the dynamic point of view it is important to check if �n,�,0 belongs to the point
subspaceHp associated with HH or if it has a component in the absolutely continuous subspace
Hac. In the latter case, ionization can take place; in the former case, these generalized
eigenstates are written as superpositions of ordinary eigenstates, even if they do not belong
to the domain of the operator, and so such solutions would be, in some sense, between linear
combination of ordinary eigenvectors and the continuous space (but with no ionization).

In order to check if �n,�,0 is generated by �n′,�′,m, n′ � 1, �′ = 0, . . . , n′ − 1,−�′ �
m � �′, i.e., if �n,�,0 belongs to the point subspace of HH , consider

�n,�,0 =
∞∑

n′=1

n′−1∑
l′=0

C
(n)
n′,l′�n′,l′,0 + χc

n,�,

with χc
n,� denoting the component of �n,�,0 in the continuous subspace Hac. Note that clearly

�n,�,0 ⊥ �n′,�′,m if m 
= 0. It was numerically found that
∥∥χc

1,0

∥∥ > 0.8, as indicated in
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Figure 1. P as a function of N.

figure 1 for n = 1 (in figure 1 the values of P(N) are exact, since symbolic calculus was
used); the parameter P(N)2 ≡ ∑N

n′=1

∑n′−1
l=0

∣∣C(1)
n′,l

∣∣2
is an approximation for 1 − ∥∥χc

1,0

∥∥2
.

Similar results were found for other values of �.
Therefore one concludes that �n,�,0 have both nonzero point and continuous components,

so that their time evolutions actually are not described by (8), but give nonzero probabilities∥∥χc
n,�

∥∥2
of ionization (and then far from being bound states).

3. Lower dimensional hydrogen atom

The fact that all �n,�,0 belong to the Hilbert space raises the possibility of finding physical
meanings for them; this section aims at discussing possible physical contents of these pseudo-
eigenvectors. The first crucial remark is that formally �n,�,0 has null azimuthal angular
momentum (m = 0). The solution �n,0,0 has also null total angular momentum (both
� = 0 = m), but there is a lack of rotational symmetry (see (6)); this particular solution gives
a clue on the physical interpretation. In fact, in comparison with ordinary eigenfunctions
�n,�,0(r, θ) are elongated over the z-axis with a logarithmic divergence at θ = 0 and π .
Figure 2 shows the absolute values of ξ0,0(θ) and 0,0(θ) as a function of θ , and figure 3 a
boundary surface of the 3D wavefunction �1,0,0, which is to be compared with �0,0,0 that has
complete radial symmetry (its boundary surfaces are spheres centred at the origin). Hence,
there is a strong indication that �n,0,0 are reminiscent of classical trajectories performing
1D-like motion, in agreement with its null angular momentum and lack of rotational symmetry.
So, it is natural to relate such wavefunctions to the 1D hydrogen atom, an interesting and
controversial subject, popularized by the work of Loudon [12] published in 1959.

Loudon stated that the 1D hydrogen atom was twofold degenerate, having even and odd
eigenfunctions for each eigenvalue, except for the (even) ground state having infinite binding
energy. Typically 1D systems have no degenerate eigenvalues, and Loudon justified the double
degeneracy as a consequence of the singular atomic potential. Andrews [13] questioned the
existence of a ground state with infinite binding energy. Ten years later Haines and Roberts [14]
revised Loudon’s work and obtained that the even wavefunctions, with continuous eigenvalues,
were complementary to odd functions, but such results were criticized by Andrews [15], who
did not accept the continuous eigenvalues. Gomes and Zimerman [16] argued that the even
states with finite energy should be excluded. Spector and Lee [17] presented a relativistic
treatment that removed the problem of infinite binding energy of the ground state. Several
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Figure 2. |ξ0,0(θ)| and |0,0(θ)| (dashed) as functions of θ .
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Figure 3. A boundary surface of |�n=1,�=0,0(r, θ, φ)|2.

other works [5, 18–24] (see also references therein) have discussed this (apparent) simple
problem.

The 1D hydrogen atom has been used as a simplification of the 3D model in several
theoretical and numerical studies [25–27]. It is then interesting that Cole and Cohen [28] and
Wong et al [29] have reported some experimental evidence for the 1D hydrogen atom. The
‘quasi-1D’ solutions �n,0,0 are natural candidates to describe such experimental observations
and may be relevant for an appropriate justification for the use of 1D simplifications. Lastly,
the 1D eigenvalues coincide with the eigenvalues of the 3D hydrogen model.

Now the solutions �n,� 
=0,0 have nonzero total angular momentum while zero angular
momentum in the z-direction, and the logarithm divergence for θ = 0 and π is also present
for all ξl,0, indicating that the z-axis plays a special role in the classical trajectories analogy.
So it is possible to interpret that �n,� 
=0,0 is related to two-dimensional (2D) motions taking
place in planes containing the z-axis, i.e., to the 2D hydrogen atom. Figure 4 illustrates such
interpretation for � = 2,m = 0. The 2D hydrogen atom has also been considered in the
literature (see [30–34] and references therein), but its history is not as controversial as for the
1D case.
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Figure 4. |ξ2,0(θ)| and |2,0(θ)| (dashed) as functions of θ .

Finally, a word about �n,�,m 
=0: since they do not belong to the Hilbert space, based on
the above discussion and proceeding heuristically, it is tempting to interpret such solutions as
the ‘contribution’ due to the classical trajectories which come into collision with the nucleus,
and the mathematical apparatus prudently avoids them explicitly (maybe a mathematical
consequence of the uncertainty principle).

4. Conclusions

One is naturally inclined to presume that higher dimensional quantum models carry somehow
lower dimensional dynamics, and the study of such simpler models could mimic important
aspects of the original one. Of course, in general the difficulties of performing such
dimensional reductions are enormous, and usually carried out by ‘brute force’.

The case of the 3D hydrogen atom discussed in this work has revealed a particular and
interesting framework: there are experimental evidence for the 1D hydrogen atom; the 3D
Hermitian model has just one self-adjoint extension, and its 3D eigenvalue equation presents
formal solutions �n,�,0 that do not belong to the domain of the corresponding Hamiltonian
operator; in spite of being formal eigenvectors, these solutions live in the underlying Hilbert
space and present a component in the continuous subspace of the Hamiltonian so that, for an
electron in such a state, ionization can take place; these solutions have formally zero azimuthal
angular momentum, with integrable probability densities, and are concentrated around the
z-axis, indicating their 1D and 2D character for �n,0,0 and �n,� 
=0,0, respectively. Summing
up, such solutions are reminiscent of 1D and 2D classical trajectories and give a connection
between the hydrogen atom in different dimensions.

How general is this framework? This is a fascinating open question, whose answer could
eventually improve the interpretations.

In addition, note that there is an attractive relation between the dimensional interpretations
advocated in this work and the mathematical formalism, which exhausts the possibilities for
(pseudo-)eigenvectors. For genuine 3D motion, it presents eigenfunctions in the Hamiltonian
operator domain; for 1D and 2D reminiscent trajectories, it presents eigenfunctions in the
Hilbert space but not in the domain of the operator; and for those colliding trajectories (axial
divergence), the formal eigenfunctions do not belong to the Hilbert space.
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